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Abstract

This study modifies. the thermodynamic model of a

previously existing first-order accurate Flux-Difference,

Splitting (FDS) algorithm for planar, supersonic nozzles.

The thermodynamic model is changed from a calorically and

thermally perfect gas to a thermally perfect (imperfect)

gas, where the flow field is '/frozen6 or non-reacting. The

frozen flow and imperfect gas assumptions more nearly

approximate the real behavior of a fluid in supersonic

propulsive nozzles. The modified code can now account for

specific heats that vary as a function of temperature.

Using curve fittings of JANAF thermochemical data, the code

can handle-nine gas species, as well, to model combustion

products entering the nozzle inlet. The marching scheme is

not altered in order to retain the robustness and efficiency

of the first-order method.

An oblique shock reflection study is done to validate

the improved .gas model. A low pressure, low temperature

case and a high pressure, high temperature case are run.

For the first case, the perfect and imperfect models are

nearly identical. For the more extreme case, pressure for

the perfect gas is 9.4% greater than the exact solution, at

the upper boundary, across the shock. An interior flow -- fI/

x



nozzle is run for the two cases, with air as the working

fluid. Again, the two models give identical res-7.ts for the

low pressure case. For the high pressure case, integrated

nozzle thrust for the imperfect ga"s model is 16% higher than

that for the original perfect gas model.
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IMPROVEMENT OF THE THERMODYNAMIC MODEL FOR A FLUX-

DIFFERENCE-SPLITTING ALGORITHM FOR THE COMPUTATION OF

HIGH-SPEED FLOWS

I. Introduction

1.1 Historical Development

From the earliest days of space exploration, scientists

and engineers have explored the concept of a single-stage-

to-orbit (SSTO) flight vehicle. Such a design could takeoff

conventionally from existing runways, enter a low-earth

orbit, reenter the earth's atmosphere, and, finally, land

conventionally on a runway. To do so with an autonomous

vehicle stretches the current limits of technology in the

areas of structures, materials. aerodynamics, and

propulsion. In particular, the air-breathing, hydrogen-

fueled propulsion system currently proposed must perform

over the wide-range of flight conditions that will be

encountered during a typical mission profile. This places

special demands on researchers' abilities to design and test

propulsion systems before actual flight occurs.

The tools of computational fluid dynamics (CFD) will

provide the lion's share of this propulsion testing



capability. More specifically, CFD will provide the most

economical and, at times, the only means of testing nozzle

designs in the high Mach number flight regimes (2:1).

In response to this need for computational design tools

to model engine flow fields, a computer code was developed

by Doty (3) to model the flow of a calorically and thermally

perfect gas as it applies to a two-dimensional, maximum

thrust, planar nozzle. Figure 1 shows the location and type

of geometry for a superson z, planar nozzle on a NASP-type

vehicle. What remains to be determined, though, is the

effect of modeling the nozzle flow with this simplified

perfect gas model. At the high temperatures involved

(approximately T= 4000 K), specific heats of gas are not

constant, as a calorically and thermally perfect gas implies

(from here on referred to as a perfect gas), but vary

significantly as a function of temperature (1:391). This

variation can have a measurable effect on flow field

properties and thrust calculations.

1.2 Problem Statement

This research effort incorporates an imperfect gas

model (thermally perfect) into a previously existing

algorithm, originally based on a perfect gas, to more

realistically predict the performance of the installed

nozzle.
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1.3 Objectives

The following objectives of this study are outlined

below:

i. Become familiar with the numerical schemes and

solution procedures used in the reference (3)

nozzle flow program.

ii. The FDS method requires the solution of

discontinuities in the flow field, also known as

solving the Riemann problem. With the aid of

curve-fitted chemical composition data from an

existing software package, implement varying

specific heats of gas for hydrogen/air combustion

products into the solution of the Riemann problem.

The basic numerical solution procedure will remain

unchanged.

iii. Validate the modified program against an exact,

imperfect, oblique shock reflection test case.

iv. Compare thrust calculations of the perfect gas

case to the imperfect gas case. A determination

will then be made as to whether the improved

model provides enough increase in accuracy to

justify the added computational time.

1.4 Assumptions

The primary assumption of this study is that the gas

obeys the thermally perfect equation of state:

3



P PRT

This relation holds for either a perfect or imperfect gas.

Thermochemically, the gas flow composition will be fixed at

some initia? value before solution of the nozzle flow field

begins. This would be the case if chemical reactions could

be inhibited while still allowing collisions to occur. Flow

properties such as pressure, temperature, density, and

specific heats may still vary. This inhibited-reaction flow

is referred to as "frozen" flow (9:191-192). This

assumption is justified due to the extremely low pressures

and high speeds that gas molecules encounter at high

altitudes. Low pressure at higher altitudes contribute to

large molecular mean free paths (distance between

collisions), lessening the chances of collisions resulting

in reactions. Additionally, molecules traveling at high

speeds relative to some nozzle length scale will have

extremely small nozzle residence times and will, therefore,

have little time to chemically react with each other.

1.5 Scope

This study will deal strictly with modifying the code's

current thermodynamic model. The numerical scheme employed

will remain intact. While the program has the capability to

design maximum thrust nozzles and predict nozzle performance

over a wide range of nozzle parameters, a standard nozzle

configuration and specified flight condition will be used

4



during thermodynamic model comparisons.

1.6 Background

The recency of work done in reference (3) meant that

the chances of finding a sudden rise in literature on the

FDS method and it's application of the Riemann problem were

not high. A thorough search of the work done regarding CFD

algorithms and their attendant thermodynamic models was

performed. No new work has been done in the area of

internal flow (nozzles) using a first-order FDS method with

local solution of the Riemann problem to handle flow

discontinuities. By default, the improvement of its

thermodynamic model would be an original effort. But many

approaches to thermodynamic modeling were surveyed whether

or not they involved FDS.

Computational methods usually use the perfect gas model

for validation of the scheme. Subsequent efforts to improve

the gas model usually go beyond an imperfect gas with frozen

flow and straight to one that can handle finite-rate

chemistry and vibrational nonequilibrium (8:1). Many can

account for dissociating gases. While improved correlation

to physics is the goal, there is an accompanying increase in

CPU time which can be very expensive if the code must be run

on supercomputers.
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Integrated
Nozzle

Figure I Hypersonic vehicle and planar nozzle (3:5)
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II. Governing Equations and Coordinate Transformation

2.1 Governing Equations

The governing equations of motion for a planar, steady,

adiabatic, inviscid flow of a compressible fluid with no

external work or body forces are the Euler equations,

written here in divergence vector form as:

8E aF _0 ()

ax ay

where the E and F vectors are given in terms of the

conservation variables as:

E PU2 P F pvu (2)

U(pe+P) [v(pe+P)

The first term of each vector represents continuity, the
second and third are the x and 7 components of momentum,

respectively, and the fourth is the energy rquation. The

governing vector equation holds true for both a perfect and

imperfect gas.

2.2 Thermodynamic Model

The original code uses a thermodynamic model based on

a thermally and calorically perfect gas. As such, the

thermal equation of state for this perfect gas assumption

is:

7



P =pRT (3)

The total internal energy for a perfect gas is:

pe - I Ip(u 2 *v2 ) (4)
Y-1 2

The thermally perfect and calorically imperfect gas

(imperfect gas) assumptions and equations are presented in

Appendix A. The thermal equation of state, eq. (3), remains

valid for an imperfect gas. But the total specific internal

energy shown uses perfect gas assumptions to obtain the

first term on the right hand side. The total internal

energy for an imperfect gas is:

pe = ph - P + Ip(u2+v2) (5)
2

Static enthalpy, h, is obtained from a least squares curve

fit of thermochemical data from JANAF tables (4:32). The

enthalpy of the mixture is given as (10:50):

h = ho + fcdt (6)
0

where the specific heat, cp, given as a function of

temperature and the least squares coefficients, is of the

form (4:32):

cp = (a + bT + cT 2 + dT3 + eT')Rgas (7)

8



2.3 Coordinate Transformation

The numerical solution i- accomplished in the

computational plane and requires that the governing

equations, eq. (1), be transformed to this space. The

physical coordinates x and y are mapped to the computational

coordinates as follows (3:142):

C x 1= -9(x,y) (8)

The governing equations, eq. (1), are transformed in uniform

computational space as (3:8):

8(E) 8(E) 8(F) (9)

For further details on the coordinate transformation, see

(3:142).

9



III. Numerical Algorithm

3.1 Introduction

The Flux-Difference-Splitting (FDS) nethod is a

technique that requires the solution of the Riemann problem

to locally model the correct physics of the flow and

globally handle complex flow interactions. Figure 2

illustrates the Riemann problem. The n:.emann problem is the

solution of flo.; discontinuities, and thie waves that result

propagate information in specific directions based on the

wave angle (3:9). Fluxes across waves can be calculated

using known values in region (6) and (0) and the solution

aft of the discontinuity. These fluxes are then "split"

based on the propagation direction (flow angle), in effect

weighting the flow information in the physically correct

direction to the next solution plane, i+l. Figure 3

illustrates the computational space.

A first-order accurate marching scheme is used with the

FDS algorithm for its monotonic, or nonoscillatory, behavior

and robustness. As described by van Leer and reported by

Doty, in regions of strong gradients, this is very important

(3:10). For further details on the first-order accurate FDS

scheme, refer to Appendix C and reference (3). This

combination of proper local physics and first-order behavior

allows strong gradients (shock waves and contact surfaces)

10



to be handled very accurately (3:2).

3.2 The Riemann Problem

Figure 2 illustrates the setup of the Riemann problem.

As described by Doty, Godunov proposed that the general flow

property, T, be modeled as a series of uniform flow regions

(3:11). The discontinuity is assumed to be located halfway

between node points j and j+l at Riemann node j+1/2. Waves

(1) and (3) can be any combinaticn of expansion or

compression waves (or neither, in which case there is no

turning of the flow). Wave (2) is a contact surface that

separates regions (2) and (4). Properties are known at the

nodes j and j+l, which correspond to regions (0) and (6),

respectively (3:11).

3.3 Solution of the Riemann'Problem

The problem consists of solving for the pressure,

density, and velocity components in regions (2) and (4).

This is done by one of three methods. The first is an exact

solution that requires an iterative procedure to solve non-

linear, coupled, non-isentropic relations across compression

waves (shock waves) and Prandtl-Meyer (simple) expansion

waves. Besides the iteration of the non-linear equations,

the solution of pressure in regions (2) and (4) must be

solved iteratively because contact surfaces can not support

normal pressure jumps and the pressures must, therefore,

11



match across the contact surface. The second method is the

exact-approximate solution. This is very similar to the

exact solution except compression waves are treated as

isentropic compressions. Again, non-linear equations, this

time due to Prandtl-Meyer relations, must be solved

iteratively and contact surface requirements must be met.

For details on these exact methods, see reference (3). The

last is the linearized-approximate method and is the focus

of this study.

3.3.1 Linearized-Approximate Method

This approach eliminates the iteration needed in the

previous methods by linearizing the Prandtl-Meyer relations.

In addition, compression and expansion waves are assumed to

be isentropic. See Appendix B for details on this method.

It starts with the differential form of the compatibility

relations:

v 1 dP ± pV d=O (10)

where the velocity magnitude and flow angle are defined as

follows:

V2 = U2 + V2  (11)

e = tan-'(v/u) (12)

Through manipulation, the linearized equation, for the case

where wave (3) is a compression wave and wave (1) is an

12



expansion wave, becomes, respectively:

[ln(P)14 + (z6 )o 4 = [ln(P)] 6 + (Z6)o6  (13)

[ln(P)] 2 - (z0 )0 2 = [lnP)]0 - (zo)ao (14)

where the linearized coefficient is:

Z= (yu 2/a 2 ) (15)

IN2 -1

Recall that the pressures and flow slope must match across

the contact surface:

P4 = 2  (16)

04 = 02 (17)

Equations (13), (14), (16), and (17) represent four

equations and four unknowns and may be solved simultaneously

to yield values for P4 and o,.

3.3.1.1 Perfect Gas.

Solving the simultaneous equations for pressure in

region (4), P,, yields:

P4 = exp([ln(P)16 + Z6 (°4-06)) (18)

All terms on the right hand side are known. Properties in

region (6) are known since these are initial values at plane

i. The z6 coefficient can be "lagged" in the known region

(6) or updated in region (4) to provide a more accurate

value of the coefficient. Recall that the slope of the flow

13



in region (4), 041 is found from the simultaneous solution

of eqs. (13), (14), (16), and (17) and is given as:

_4 [in(P)] 0- [1n(P) ] 6 + (Z) 06+ (z 0 ) CO
-4 =z+ 0  (19)

The details of this derivation appear in Appendix B and

reference (3).

With pressure known aft of the wave, isentropic

relations such as:

P4 . 1 (20)
P6 [P6

a4 = [YP 4 /P 4 ]1 1 2  (21)

can be used to obtain density and speed of sound in region

(4). For adiabatic flow, conservation of stagnation

enthalpy (ht6 = h,4) across wave 3 is used to determine Mach

number and the velocity components in regions (4). But

these rely on a constant specific heat ratio, y, so another

approach must be taken for an imperfect gas. See reference

(3) for details of the perfect gas Riemann problem solution.

3.3.1.2 Imperfect Gas.

All the above manipulations and equations from eq. (10)

to eq. (18) are valid for an imperfect gas as well.

Therefore, to obtain the other property variables in region

(4), a relationship is needed that can utilize pressure as

14



A

the only known value in region (4). The following equations

show how this requirement can be met when the waves are

approximated as isentropic waves. Across the isentropic

wave 3, going from region (6) to region (4), the change in

entropy across the shock is zero (10:58):

S.- = 0 (22)

Integrating the differential entropy equation yields:

S4 -=1 4 -0 6 - Rln (23)
"P6

Combining theses two relations results in the entropy

parameter in region (4), +4:

4,=$6.Rln ( a) (24)

The pressure in region (6), P6, is known and P, was

calculated from eq. (18). The entropy'parameter in region

(6), 06, is calculated using the least squares coefficients

and the known temperature in region (6) (4:32):

6 [40 + aln + bT + C T2 d + eT41 R (25)

a i 3 4

With a value for 0, given by eq. (24), the following

equation for .,, as a function of temperature in region (4),

is given in least squares coefficient form (4:32):

15



[4,= + alnT4 + b + + + -T 4 + _T4  R (26)
2 3 4

This equation can be iteratively solved for temperature in

region (4), T4, and the equation of state then determines

density.

For adiabatic flow, the imperfect case also relies on

conservation of stagnation enthalpy (hi6 = hi4) to determine

velocity components and Mach number, but static enthalpy

must be determined as a function of temperature in order to

find the x component of velocity, u. Total stagnation

enthalpy in region (6) and (4) is:

h, =h = h6+1 (u 2 +v 2)6  (27)

The local slope of the flow in region (4), 04, is defined

as:

04 V U1 (28)

Substituting this equation into ea. (27) and solving for the

x velocity component, u4, yields:

2(h -h) (29)
1+2

1+4

where static enthalpy in region (4), h4 , can be found as a

function of T4 and the least squares coefficients. More

complete details of tile imperfect gas Riemann problem

solution are contained in Appendix B.

16



3.4 First-Order Accurate Interior Point

The initial values are known at plane i and the

solution is desired at the next plane, i+l. Figure 3 shows

the stencil in the solution plane. The first-order accurate

FDS method uses positively biased information from Riemann

node j-1/2 and negatively biased information from Riemann

node j+l/2 to integrate the solution from node (i,j) to

(i,j+l). To march the solution in the x direction, a

combination of finite difference and flux difference

approximations are used for the partial derivatives of the E

and F vectors in the governing equation. This is

accomplished by computing the Riemann fluxes and then

differencing these fluxes. These flux differences are then

propagated or "split" in a particular direction based on the

local slope of the flow. It should be noted that, after

solving the Riemann problem by the new method described in

the previous section, this FDS method remains unchanged.

Details of the solution procedure are in Appendix C.

The first-order accurate FDS approximation to the

transformed governing equation is (3:15):

E5 E-AUnx [E;_1 /2 +dE;+112]-~ ldF; 112 +dF;4 221 (0

The first-order accurate FDS boundary point calculations are

presented in reference (3).

17



3.5 Decoding the Solution

With the solution vector integrated from plane i to

i+l, the E and F flux vectcrs, in conservative form, are

decoded or reduced to the primitive variable form necessary

for the solution of the Riemann problem at the next plane.

Details are presented in Appendix D. The E vector, in

conservative form, was presented in Chapter 2 and is

repeated here for convenience:

Pu
uiPU (31)
P UV

u (pe+P)

This can be written in terms of the E vector components,

which are known from the marching scheme:

El = pu (32)

E2 = pu 2 + P (33)

E3 = puv (34)

E4 = u(pe + P) (35)

As was mentioned in Chapter 2, the E4 vector differs in

total internal energy, pe, for the two thermodynamic models.

For a thermally perfect gas, total internal energy is given

as:

18



41

pe = p0 + ip(u2 v2) (36)

where, for a perfect gas, specific internal energy, 4, is:

= CvT (37)

and for an imperfect gas, specific internal energy is:

0= h - RT (38)

After substituting eq. (37) into eq. (36) and

performing several manipulations, decoding of the perfect

gas solution provides a quadratic equation for the x

component of velocity, u, which is a function of the E

vector components and 7 (3:222):

y+1 (El) u2  (E2) U (E4) (39)
2 (y-1) IY 1 12 ( l

Since this equation relies on a constant y, another

approach is required for an imperfect gas. Details of the

imperfect gas decoding procedure are presented in Appendix

D. Begin by substituting eq. (38) into eq. (36). Substitute

the resulting eq. (36) into the E4 vector, eq. (35). After

manipulating.and substituting eqs. (32) and (34) into eq.

(35), the E4 vector component becomes:

E4 = hEl El U2 + 1 E32  (40)
2 2 E1

This equation has two unknowns: static enthalpy, h, and the

velocity component, u. Static enthalpy is a function of

19



temperature and the least squares coefficients. By

substituting the thermal equation of state and the E2

component into the El component, the x component of

velocity, u, can also be cast as a quadratic in terms of the

unknown temperature:

(El)u 2 + (E2) u + (El)RT = 0 (41)

An initial guess for temperature can now be put into eq.

(41) and static enthalpy, h. If the E4 component is not

satisfied, the process is repeated. An iterative process,

such as the secant method, can beused to find temperature.

The calculation of the other primitive variables is as

follows:

U E2 ±(E2)-4 (El) ((El)RT) (42)
2 (El)

V- E3 (43)El

P = E2 - (El) u (44)

P E1 (45)
U

In summary, the Riemann problem is solved at all the

half node locations at plane i by one of the three solution

methods described. The fluxes are differenced and split and

then marched by the first-order accurate method shown. At

plane i+l, the solution vector, E, is decoded to start the

20



process again.

This approach differs from the more familiar marching

algorithms. Where decoding the E vector into primitive

variables is optional for methods such as the Roe scheme,

the Riemann problem requires it. Again, the purpose of this

is to model, more directly, the correct physics of the local

flow.

21
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Figure 3 Stencil for first-order accurate FDS method
(3:174)
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IV. Validation Studies

4.1 Introduction

The imperfect gas model was validated by comparing

results to exact solutions. There is no exact solution for

the flow field in a hypersonic nozzle. But there are exact

solutions available for various flow geometries. One is the

oblique shock reflection. Reference (10) has a parallel

development structure that discusses perfect gas relations

and the corresponding imperfect gas case for normal shocks,

oblique shocks, and Prandtl-Meyer waves. The oblique shock

case was chosen since the large jump in properties across

such a shock are a good test of the numerical method. For

details on validation of the perfect gas algorithm, using

all three Riemann solvers, for supersonic source flow and

Prandtl-Meyer flow, see reference (3).

4.2 Oblique Shock Reflection Study

The geometry for the oblique shock reflection study is

shown in Figure 4. The height of the channel is G.0254

meters before the ramp and the length of the channel is 0.11

meters. Computations begin at point 0 and proceed to a

location past the second dashed line. Uniform flow travels

left to right and encounters an abrupt turn at the 100 ramp,

depicted as . The resulting incident shock impinges the
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ceiling of the channel and a reflected shock is produced.

The region used for validation is between the dashed lines.

A relatively fine grid of 51 node points, in the y

direction, is used for all cases. Grid spacing in the x

direction is based on the Courant-Friedricho-Lewy (CFL)

stability criteria (3:144). Details on grid generation can

be found in reference (3).

Two initial conditions were run for comparison of the

two thermodynamic models. Input for the initial value (IV)

line consists of the x and y location of the IV line, static

pressure, static temperature, Mach number and flow angle.

The data for initial condition #2, IC 2, was obtained from a

cycle analysis code that outputs species concentrations and

flow properties (6). Table I shows the two initial

conditions.

For the validation studies, air was the working fluid

in both thermodynamic models. The perfect gas model is very

limited in its ability to model different fluids. This is

accomplished in the input deck by specifying the specific

heat ratio, y, and the gas constant, R, where R,3 =-

RF,,,r/mole-wt. The perfect gas model sets y= 1.4 and R ,,=

287.0, for the validation study. The imperfect gas model

uses a more chemically correct air composition in the

familiar mass fractional quantities:
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N = .7556 kgkgmix

02 = .2316 kgokg~ix
kgAj,

Ar = .0128 kgrkgmix

The gas constant is a function of the molecular weight of

the gas and is, therefore, the same value as that for the

perfect gas, but the specific heat ratio is a function of

temperature. Recall that the fluid composition is unchanged

or "frozen" throughout the flow field.

Two areas in the flow were studied. The first was the

ceiling of the channel or the top most node. Here, it could

be seen whether the full pressure rise on both sides of the

shock impingement point would be captured and located

correctly. The second was at interior'node j= 40 (node

counting ascends from the floor to the ceiling). This

interior node location will show the capture and location of

the incident and reflected shock waves.

The exact solution of an oblique shock wave used is

based on an imperfect gas. This solution requires that a

double iteration be performed on values of the shock wave

angle, e, and density, p. Figure 5 illustrates the oblique

shock wave geometry. Details of this method are found in

reference 10 (10:369). A short code was developed to
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quickly find properties aft of an imperfect oblique shock to

use as input for the initial value line of the code. This

program is located in Appendix E.

Figure 6 shows the results of IC 1 for the ceiling

boundary condition. The two models show no discernable

difference in pressure between the two solutions. Both

models correctly capture the magnitude of the pressure jump

and locate the shock well. The agreement is expected given

the low pressure and low temperature initial conditions. At

temperatures less than T= 600K, y remains relatively

constant and the two models should behave similarly (1:441).

This holds true for T= 578 K, where, in region 3, 7= 1.4 for

the perfect gas and y= 1.39 for the imperfect gas. Looking

at Figure 7 for the interior node, again, the pressure

magnitudes and locations of the shocks are computed

correctly.

Figure 8 shows the results for IC 2 at the ceiling.

For this boundary, the imperfect gas correctly captures the

magnitude and location of the pressure jump, but the perfect

gas misses both the location arid the pressure jump across

the shock by a significant amount: a 9.4% pressure

difference. The difference between the thermodynamic models

can be attributed to the greater effect that the higher

temperature has on y. For a temperature, T= 4278 K, in

region 3, y= 1.276 for the imperfect gas and y= 1.4 for the
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perfect gas. This is due to the perfect gas having a higher

percentage of energy conversion, across the shock, show up

as translational molecular energy than would occur for an

imperfect gas. Since temperature is a direct measurement of

the translational energy mode, the perfect gas model has a

greater magnitude change in pressure and temperature across

the shock. For details on the mechanisms of high-

temperature effects for an imperfect gas, see Appendix A.

The perfect gas model misses the location of the shock

because it computes a shock wave angle, £, that is greater

than that for the imperfect gas. The shock wave angle is,

therefore, located a shorter distance in the x direction

along the upper wall.

Figure 9 shows the results for the interior node for IC

2. Again, the imperfect model correctly captures the shock

location and pressure magnitude rise for both waves. The

pressure difference between the exact solution and the

perfect gas, in region 2, is 5.3% and in region 3, 9.4%.

These results also show the superb behavior of the

first-order FDS method. The most obvious characteristic i;

the monotonic behavior of the method. No overshoot of th,

pressure magnitude occurs as does with some second-order

accurate methods that have not been modified to detect

gradients and reduce oscillations (3:24).

The preceeding validation studies have shown that the
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improved thermodynamic model has been correctly implemented

into the FDS method and provides consistent results. More

physically correct solutions are now possible for the

conditions likely to be encountered in SCRAMJET nozzles.
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Table 1. Initial conditions for oblique shock reflection
study

IC 1 IC 2

ramp angle (Owj) 100 100

Mach Number 6.0 3.465

pressure (N/m2) 1696.4 200703

temperature (K) 273.23 3079.1
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V. Results and Discussion

5.1 Introduction

Analysis of different flow conditions for a supersonic

planar nozzle is presented in this chapter. The first case

is for the internal flow of the supersonic nozzle. The

second case involves an interior/exterior flow to simulate

actual flight conditions. Static pressure, static

temperature, and thrust are plotted as a function of the x

location along the nozzle wall.

Doty's code (reference 3) can run a variety of nozzle

geometries ranging from a straight wall nozzle to a skewed-

parabola nozzle wall. The lower cowl can also be angled at

various "hinge" points to further aid nozzle optimization.

For both flow configurations, a straight cowl and a

parabolic nozzle wall are used.

5.2 Internal Nozzle Analysis

Figure 10 illustrates the internal nozzle geometry.

For the internal flow nozzle, the cowl is extended the

length of the nozzle, in effect, splitting the flow. An

attachment angle, 0B, must be specified for all nozzles;

8B= 250 is arbitrarily chosen for this analysis. Two sets

of initial conditions were run. The first set represents a

less extreme temperature and pressure. The second
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represents conditions consistent with hypersonic flight at a

freestream Mach number of M-= 15. The later conditions were

obtained from a cycle analysis code (6). The modified

imperfect gas code was designed to simulate nine gas species

for a given flow field but the three constituents of air

(nitrogen, oxygen, and argon), in the correct mass ratio,

were used for comparison purposes. Nozzle inlet conditions

are listed in Table 2.

The pressure, temperature, and thrust plots for IC 1

are shown in Figures 11, 12, and 13, respectively. For this

low-pressure, low-temperature case, the two gas models give

nearly identical results. This behavior is expected since

the variation of specific heats with temperature is

negligible at these conditions. This is consistent with the

IC 1 validation study case. IC 1, therefore, proves that

the imperfect gas model is consistent with the proven

perfect gas model from reference (3). The plots of pressure

and temperature illustrate particular characteristics of the

nozzle. The large drop-off in temperature and pressure, in

Figures 11 and 12, respectively, is a result of the rapidly

expanding flow around the nozzle attachment radius (AB in

Figure 10). The subsequent small rise in pressure and

temperature, is a result of recompression of the flow in the

parabolic region of the nozzle (BC in Figure 10). Figure 13

shows the integrated thrust along the nozzle wall, where
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both models predict the same result.

Pressure, temperature, and thrust are plotted for IC 2

in Figures 14, 15, and 16, respectively. For this case,

noticeable differences are seen between the thermodynamic

models.

Temperature shows a greater difference in Figure 15.

Specific heat ratio, y, for the perfect gas is held constant

at y= 1.4 while y varies with temperature for the imperfect

gas. Notice also that temperature drops a larger amount for

the perfect gas. Referring to Appendix A, energy

conversion, across expansion or compression waves, is

distributed over different molecular energy modes, with a

perfect gas receiving a greater percentage of translational

energy (ie., temperature) than an imperfect gas does. That

is why temperature and pressure have a greater decrease in

the expansion region of the nozzle for the perfect gas

compared to the imperfect gas. Pressure shows the least

difference in Figure 14. Recall that the calculation of

pressure for the linear-approximate method was nearly the

same for both gas models. The only difference was in the

calculation of the z coefficient in eq. (15), where y is a

function of temperature. The coupling of temperature and

pressure in the thermal equation of state results in a

similar trend for pressure, but to a lesser degree.

Consequently, pressure differences will not manifest
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themselves to a large extent.

A smaller magnitude drop in pressure, for the imperfect

gas, results the in greater thrust shown in Figure 16.

Recall, in the shock validation study, that the perfect gas

model overpredicted the pressure magnitude rise for IC 2.

This trend continues for the interior nozzle, except

pressure is falling instead of rising. The main point is

the overprediction of magnitude changes in properties. In

this case, integrated thrust along the nozzle wall for the

imperfect gas is sixteen percent greater at the nozzle exit.

This is a significant difference and illustrates the effect

of accounting for property variations as a function of

temperature.

5.3 Internal/External Nozzle Analysis

The internal/external flow configuration was run with

air for both the interior and exterior regions. Although

the multiple species from combustion products of H2/air can

be simulated, the variable specific heat trends for air are

similar. Figure 17 illustrates the nozzle flow and

geometry. Freestream conditions consisted of an altitude of

129,900 m, pressure of 303.36 N/m2, temperature of 250 K,

and Mach number of 15.0. Initial conditions for the

exterior flow were obtained by sending air across a 10'

ramp, simulating flight at some angle of attack. This is a

simplification of the forebody compression that would
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actually occur. These initial conditions will make up the

properties in region 2 of Figure 17. Perfect ani imperfect

gas relations were used for computing external initial

conditions for the respective thermodynamic models. Table 3

shows the exterior initial conditions. Table 4 shows the

nozzle inlet conditions for the two models. This

corresponds to combustor exit flow in region 1 obtained from

a cycle code using free stream conditions (6). Figures 18,

19, and 20 prove the modified code works for an

internal/external flow case. Trends are reversed compared

to the interior flow nozzle. Now the imperfect gas has a

larger pressure and temperature magnitude change, shown in

Figures 18 and 19, respectively. This is due to the values

of y and Rgas (y= 1.25 and R,,.= 332.26) used for the perfect

gas model. This reversal demonstrates the sensitivity of

the flow field solution to changes in the specific heat

ratio and the gas composition, which manifests itscf.. in

Rqas. Though not easily seen in Figure 18, pressure for the

perfect gas is slightly higher than that for the imperfect

gas. The coupling trend between pressure and temperature,

where temperature shows the larger diference between the

thermodynamic models (Figure 19), is the same as that seen

for the interior nozzle. The modified code can not yet

handle one mixture for the interior and another for the

exterior flow, so no comparisons are made between the two
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thermodynamic models or with the interior nozzle.

Central processing unit (CPU) run time was obtained for

the internal/external flow geometry to compare computational

efficiency. The perfect gas model required 2.1 seconds of

CPU run time while the imperfect gas model finished the

solution in 7.9 seconds. This difference is a result of the

iterative procedures needed to determine properties aft of

the waves for solution of the Riemann problem. Considering

the already remarkable performance of the first-order

accurate FDS scheme, this is not a large penalty to pay for

a more physically correct solution.

5.4 Summary

Along with the validation study of oblique shock

reflections, the interior flow nozzle, again, demonstrates

the effect of accounting for the caloric imperfections of

high-temperature gases. Since the net thrust margins

required to launch a NASP-type vehicle are very small, the

thrust difference, found in the proceeding nozzle study, are

significant. Realistic first-order analysis of hypersonic

nozzles is important to final nozzle design.

The imperfect gas model does not account for all the

physics of the flow. The frozen or non-reacting flow

assumption made here does not account for dissociation

losses nor energy recovery due to recombination. But a

study by Snelling (7), which implemented a finite-rate
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chemistry model into high-expansion rate flow fields and

nozzle geometries similar to ones used here, concluded that

there is little difference between the frozen flow

assumption and the finite-rate chemistry model in solving

the flow field. This supports the fact that the improved

thermodynamic model can nr-,re realistically model the actual

physics of such flow fields. Where differences turn out to

be small between thermodynamic models, the first-order

accurate, imperfect gas FDS method should be significantly

more efficient than a finite-rate algorithm in terms of CPU

time.

39



Q Nozzle wallC
r

1: 0 B

A
-,Ibrv ............................ --.............................

Cowl wall F
y.

x
Figure 10 Parabolic nozzle contour
(3:46)

1.2E46,

- - PAIOCtGI MOdWJ

S$.OE.04

CO,

O.CE.O0 . .i. .

-OS 40 OS 1.0 I.S 2.0 2.s 30

X-Location (m)

Figure 11 Pressure along nozzle wall,
IC 1

40



320

290

240 8 IMPerteot Go& Model

200 PerfectGCMoadel

16)

E 120

90 9

(j) 40

*a o asO 1 1.0 1.6 2.0 2.6 ao

x-Iocatlon (in)

Figure 12 Temperature along nozzle
wall, IC 1

S2000
CD-e- Imlperlect Gas Model

P. - - Petteot Gas Model-C

1000

0 .. . . .
-06 -410 08 1.0 1.6 20 26 30

x-Iocation (in)

Figure 13 Interior nozzle thrust, IC 1

41



W -e3 Impeded Ges Model
L. - -Pedeot Gee Model

&OOEt84

406 40o Q5 .0 I.S 2.0 26 3L0

x-Iocation (in)

Figure 14 Interior nozzle pressure, IC
2

320900

-~~ -- kverfg Gas Modl
Y-240400 - P.,tetGAS Model

IM000

E
a)120&00

MOW

4SOO 4000 (Qs0 1.000 1.500 2.000 ?SOO 2000

x-Iocation (in)

Figure 15 Interior nozzle temperature,
IC 2

42



1000

MO-

2. ODDO

PerbO Gas Modal

x-toc-ation (in)

Figure 1.6 Interior nozzle thrust, IC 2

43



Nozzle wall

rc

B " Internal flow interaction

A

Region I
Combustor exit flow Contact surace

IO D .,/"Cowl .........-

G F
Region 3b

R o2External flow interaction,_Region 2
External flow

Fictitious lower boundary

y

x
Figure 17 internal and external nozzle flow and
geometry (3:60)

44



2.4CtC

E
Z

-- efea Gas Model

= I20Es0E

(0 . +04

OO-00 - L

-0.6 -MO 06 1.0 I.S 2.0 2.6 10

x-Iccation (m)

Figure 18 Pressure along nozzle wall
for internal/external flow nozzle

00

2000.00

-e ImlDedt GeMoel
240.o0 Pedeo Gas Modej

()16OO0

U)

S120000

100000

0.

0000

-4500 .0000 a.So0 1.000 1.500 2.000 2,SO0 a000

x-location (m)

Figure 19 Temperature along nozzle wall
for internal/external flow nozzle

45



#m00

,4-,

- -e- :petfecl G,$ MWe

000 . I . . .1 .

'1 000 CL500 1.000 1.500 Z.000 2.SOO 2000

x-Iocation (in)

Figure 20 Integrated thrust along

nozzle wall for internal/external nozzle

46



Table 2 Initial conditions for internal
flow nozzle

IC 1 IC 2

flow angle (0) 00 00

Mach number 6.0 3.465

static pressure (N/m 2) 1696.4 200703

static temperature (K) 273.23 3079.1

Table 3 Exterior initial conditions for the
internal/external flow nozzle

Perfect Gas Imperfect Gas

Mach number 8.16 8.42

static pressure (N/m2) 4095.6 4068.9

static temperature (K) 800.2 776.4

specific heat ratio, y 1.4 1.4

gas constant, Rga (J/kg/K) 287 287
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Table 4 Interior initial conditions for the

internal/external flow nozzle

Perfect Gas Imperfect Gas

Mach number 3.465 3.465

static pressure (N/m2) 200703 200703

static temperature (K) 3079.1 3079.1

specific heat ratio, y 1.25 1.28

gas constant, R.as (J/kg/K) 332.26 287.0
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VI. Summary and Recommendations

6.1 Summary

The thermodynamic model of a previously existing CFD

algorithm has been improved by implementation of a thermally

perfect and calorically imperfect gas model. By modifying

the thermodynamic model and maintaining the desirable

characteristics of the original marching scheme, a more

physically correct solution of supersonic planar nozzle

flow is avai]able.

The imperfect gas model was shown to be nearly

identical to exact solutions that were used in the oblique

shock reflection validation studies. Physically real flow

geometries, as well as the validation studies, revealed that

the perfect gas model overpredicted magnitude changes in

performance quantities as pressure and temperature were

increased. CPU run times were 3.75 times longer for the

imperfect gas but the advantages of a more physically

correct solution outweigh the reduction in computational

efficiency. The full potential of the imperfect gas model

will be realized when combustion species can be run for

internal nozzle flow and air for external flow.

In the design and optimization of a hypersonic nozzle,

the differences between thermodynamic models will show up in

the size of the nozzle required to provide a specified
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thrust. In the design of a NASP-type vehicle, these results

will, in turn, influence engine size, fuel onboard, vehicle

size, and so on. Therefore, new and more accurate

thermodynamic models will be crucial to optimizing the

entire vehicle design.

6.2 Recommendations

Inevitably, follow-on research topics arise as a by-

product of such a study. Some future areas of interest to

accompany this research would be:

1. Further modification of the thermodynamic

model to include finite rate chemistry and

equilibrium and nonequilibrium flows.

2. Experimental analysis of a simple nozzle

geometry to validate the imperfect gas model in

the FDS algorithm.

3. An accuracy and efficiency comparison tT the

modified FDS algorithm with a parabolized

Navier-Stokes code.

4. Design, optimization, and comparison of planar

supersonic nozzles using the perfect and imperfect

thermodynamic models.
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Appendix A: Thermodynamic Model

A.1 Introduction

The complexity of a thermodynamic model depends on how

much physics of the flow one wishes to account for. A

perfect gas is the simplest, where specific heats, c, and

cp, and hence, the specific heat ratio, y, remain constant

throughout the flow. In this case, enthalpy, h, and

specific internal energy, 6, are explicit functions of

temperature (1:388):

h cPT (47)

a CVT (48)

Again, the thermal equation of state holds and for frozen

flow, the specific gas constant, Rg.s, remains constant since

the molecular weight of the gas is fixed:

RgRS = universal (49)
MW

For the perfect gas assumption, many basic thermodynamic

relations can be solved for explicitly and shock wave

analysis is comparatively straightforward.

At the other end of the spectrum is a nonequilibrium,

chemically reacting gas. This model accounts for most high-

temperature gas effects. Flow properties are not only a

function of temperature but also pressure and time. Time is
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an independent variable since reactions have not reached

steady state. The effect of pressure is to inhibit

reactions at higher pressures and promote them at lower

pressures (1:374).

Dissociation is another high-temperature effect.

Dissociation, which alters the molecular weight of the gas,

occurs at around 2500 K for 02, and begins at 4000 K for N2.

Van der Waals' effect also comes into play as intermolecular

forces become important (1:390).

A.1 The Imperfect Gas Model

When categorized, by assumptions, among the various

thermodynamic models, an imperfect gas assumes that

intermolecular forces are negligible. With respect to a

perfect gas, an imperfect gas is the next step in

complexity. The difference between these two models is a

function of which mode of internal energy is excited. When

dealing with monatomic gases, specific heats are basically

independent of temperature since only the translational

energy mode is available (neglecting electronic energy).

Since most flow field gases are diatomic, the translational,

vibrational, and rotational energy modes are available, even

at room temperature (5:222). For air as a perfect gas, it

is assumed that internal energy is only a function of

translational and rotational degrees of freedom (in this

discussion of energy modes, e will represent specific
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.1

internal energy instead of 6):

eperfec- = ecr + e...

3 RT + RT
2 (50)

=5RT

2

Recalling that e=cT, the specific heat at constant volume

yields c,=5/2R. For a thermally perfect gas:

cp = c, + R
7a (51)

C= 2

CP
CV (52)

7
5

Where the familiar quantity, y= 1.4, is obtained for air as

a perfect gas (9:124,133).

When temperature reaches 600 K, vibrational energy is

no longer negligible (1:441) and a new internal energy mode

must be added. From a statistical mechanics approach, this

component is represented, without further proof, as (1:439):

evib hv/kT RT (53)
ehvlkT-l

where h is Planck's constant, k is Boltzmann's constant, and

v is the fundamental vibrational frequency of the molecule.
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The imperfect gas model accounts for this vibrational mode.

In summary, four modes of energy each contribute a

portion to the total internal energy (1:440):

eco= [RT] rans + [RT] roc + [ehv/kT o+ eel (54)
2 eZl ehv/kT-l] r

Comparing this equation to eq. (50)a, it is obvious that the

energy of gaseous molecules is spread over more modes for an

imperfect gas (three modes) than for a perfect gas (two

modes). For perfect gas flow across a shock, the kinetic

energy in front of the shock is converted to translational

and rotational energy aft of the shock. For imperfect gas

flow, the vibrational energy mode can accommodate some of

this energy conversion across the shock, lessening the

amount of energy going into the translational and rotational

modes, relative to a perfect gas. This effect is important

at temperatures above 600 K. Since temperature is a direct

measurement of kinetic (translational) energy, a perfect gas

tends to overpredict temperature (1:510).

A.2 Implementing Imperfect Gas Assumptions

Determining where modifications to Doty's algorithm (3)

are required is a matter of locating what calculations are

based on a perfect gas model. The most obvious changes are

in the solution of the Riemann problem. These are basically

compression or expansion wave problems and applying

imperfect gas assumptions is well documented in text
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materials (10). For the linear-approximate solution that is

being used for this study, the method for finding pressure

aft of the discontinuity remains the same. What is less

straightforward is how to calculate properties, such as

entropy and enthalpy, in the aft shock region based on

variable specific heats. Since decoding of the E and F

vectors is based on constant y, this must also change.

As is mentioned in the beginning, a desirable

capability is to handle a multiple species gas. The current

perfect gas code simulates air (physically based on a

combination of nitrogen, oxygen, and argon) as the working

fluid. The only way to alter the composition of the gas is

through the gas constant, R,,,, where Rgas= Run,,/mole-wt. It

does not have the capability to handle individual gas

species. To allow greater flexibility, a multiple species

gas would allow this code to handle the output from a

separate cycle code analysis program. The combustion

products of a SCRAMJET engine will consist of mostly water

and nitrogen which are quite different from air as far as

molecular weight goes, and hence, will behave differently.

Doty's code can handle a nonuniform input from a combustor

exit and this capability would be enhanced with true

combustor products rather than air.

A.3 Complex Chemical Mixtures

A FORTRAN code, referred to here as CET89, by Gordon
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and McBride (4), outputs, among other things, the least

squares coefficients of specific heats, enthalpy, and an

entropy parameter as functions of temperature. Data from

JANAF thermochemical data has been curve fitted for

approximately 400 species of gas using the method of least

squares to the obtain coefficients. There are two sets of

coefficients for each species that correspond to two

temperature ranges, 300-1000 K and 1000-5000 K. The

calculation of the three properties are listed below.

A.3.1 Specific Heat, cr.

Specific heat for a mixture of gases is represented by

the following summation (10:50):

ncp E Cicp, (55)
i-1

where n is a particular gas species and C, is the mass

fraction of the species. In terms of the least squares

coefficients cp is written, on a mass basis, as (4:32):

cP1 = (a + bT + cT 2 + dT2 + eT')RgasCi (56)

A.3.2 Enthalpy, h.

Enthalpy for a thermally perfect gas is given by the

following expression (10:50):
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h = ho + ftcpdt (57)
0

Substituting eq. (56) into this equation yields the least

squares coefficients form of enthalpy, for the itt) species,

on a mass basis (4:32):

hi = [(h o + aT + b5T2 + CT 3 + + eT5)Rgs + h29 (58)
2 3 4 5 MW

where h29 is the mass basis value of enthalpy at T= 298 K.

A.3.3 Entropy, s.

Entropy, for a thermally perfect gas, is given by the

following expression (10:51):

s= t: dt - RlnP
P0  (59)

= 0 - Rln _P Opo

Again, substituting eq. (56) into the integral portion of

this equation yields the least squares coefficient form of

the entropy parameter, *,, for the it' species (4:32):

40i = (Co + alnT + bT + CT2 + dT3 + eT4)R ,sCi (60)

2 3 4

Appendix B and Appendix D show how these expressions

are used to implement the imperfect gas model.

A.4 Code Modifications

The original code consisted of 46 subroutines. Three
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were added and eight were modified. The following is a

summary of the altered subroutines. Appendix E contains the

three additional subroutines and imperfect gas oblique shock

wave solver.

Subroutine INITEM: initializes the arrays and
variables. Values of coefficients from CET89 output
are listed here.

Subroutine INPUT: read statements for input deck.
Mass fractions are read in here.

Subroutine INVALU: initial value line for inlet to
nozzle used to begin Riemann problem. Speed of sound
and density require y(T) and gas constant, R,,,, for
mixture.

Subroutine OUTINP: outputs the input deck.

Subroutine RMCONT: determines which Riemann solver to
use. Updated z coefficient requires y(T).

Subroutine RMAPAP: solution of the Riemann problem.

Subroutine UPWIND1: marches the solution in the x
direction.

Subroutine BNDWAV: marches the solution in x direction
along boundaries.
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Appendix B: Solution of the Riemann Problem

This discussion of the linearized-approximate method

applied to the solution of a perfect gas Riemann problem is

summarized from Doty's research (3). The reader is urged to

consult reference (3) for more complete details.

As previously mentioned, the linearized-approximate

method treats waves as isentropic expansions and

compressions. By linearizing the Prandtl-Meyer equations, a

closed-form equation results that requires no iteration.

Figure 21 illustrates the setup of the Riemann problem.

B.1 Linearized-Approximate, Perfect Gas

For isentropic, planar, steady flow, the differential

form of the compatibility relations, valid along Mach lines,

is:

V-1 dP ± pv2d = 0 (61)

where the velocity magnitude and flow angle are:

V2 = U2+V 2  (62)

e = tan-1 (v/u) (63)

Through substitution, manipulation, and realizing that

p=yP/a , eq. (61) is recast as:

dP ± (yu 2/a 2 ) d(v/u) = 0 (64)

P VM/ -I
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Two definitions and a relationship are introduced:

z (Yu 2/a 2 ) (65)

- v/u (66)

d[ln(P)] - dP (67)
P

Eq. (61) is then written more compactly as:

d[ln(P)] ± (z)do = 0 (68)

Linearizing this yields:

A[ln(P)] ± (z)Ao = 0 (69)

Referring to Figure 21, a positive wave, wave (3), is

required to pass information from region (0) to region (2).

Using the positive sign from eq. (69) yields:

([ln(P)] 2-(n(P)1 0 ) + (z 0 ) (02-0 o ) = 0 (70)

Rearranging eq. (70) yields:

[in(P)]2+(z 0) o  = [in(P)]o + ( z O) cO0  (71)

A similar process is performed for regions (6) and (4):

[ln(P)]4+(z 6 )o4  = [ln(P)] 6 +(z 6 )o 6  (72)

Recall that the pressure and flow slope must match across

the contact surface:
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04 02 (73)

P4 =P 2  
(74)

Eqs. (71), (72), (73), and (74) represent four equations

and four unknowns and may be solved in closed form.

Substituting eqs. (73) and (74) into eq. (71) and

rearranging gives:

[1n(P)]4 +(z 0 )o 4 = [1n (P) ]0 + (z 0 )o 0  (75)

Solving for 04 yields:

[in(P) ] 0-[n(P) ] 6 + (z 6 )o 6 + (z 0 ) 0  (76)a4  (Z6+Z 0 ) (76

Using this value in the solution of P4, in eq. (72), gives:

P4 
= exp([In(P) 1 6 +z6 (0 4 -0 6 )) (77)

Isentropic relation- can be used to obtain density and speed

of sound in regions (2) and (4) (only region (2) is shown

here):

P2  = [L21 (78)

a 2 = [YP 2/P 21 1/2  (79)

Conservation of stagnation enthalpy across a wave is

used to obtain velocity (recall that h=cpT):
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h C _Y2 = 1 (80)ht 'cpTt6 T [ _+1M2

Eq. (80) can be solved explicitly for M4; and the velocity

components, in terms of flow slope, (Y4, are:

u4 = M4a4cos[tan-'(0 4)] (81)

v4 = M4 a4 sin [tan 1 (4)] (82)

A similar process is done for region (2).

B.2 Linearized-approximate, Imperfect Gas

Pressure in region (4), P4, from eq. (77), is also

valid for an imperfect gas. Since pressure is the only

property known in region (4), a relation is needed that does

not rely on a calorically perfect form of conservation of

stagnation enthalpy.

To determine temperature, relations are used that take

advantage of the isentropic nature of the flow. For a

thermally perfect gas, the differential quantity of entropy

in a system is (10:45):

ds - R d  (83)

Integrating this yields (10:58):

= f c dt - Rln___ = 0 - Rln-_P (84)
Jp C P. P0

where the entropy parameter, , is defined as (10:58):
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f,'cp d (85)

0 t

Substituting eq. (56), on a molar basis, into eq. (85)

yields the already integrated equation (10:58):

4) + alnt + bt + Ct2 + d 3 +- R (86)

Appendix A shows how the entropy parameter, 4, can be

determined. A change in entropy is found from eq. (84) and

written for regions (4) and (6) as (10:58):

s1 - S6 = (4 - (06 - Rkm (-) (87)

For isentropic flow, As=0 and eq. (87) is rewritten as:

4= 4k + R in (f-) (88)

where k) is found using eq. (86) in terms of the known

temperature in region (6). The entropy parameter in region

(4), 4, is the only unknown is this equation. Using eq.

(86), temperature in region (4), T4, is solved for

iteratively using the secant method. Subroutine ENTROPY

performs this operation and can be found in Appendix E.

With temperature and pressure in region (4), density can be

determined using the thermal equation of state.

As in the perfect gas case, conservation of stagnation

enthalpy is used to find the velocity components, but in a
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different form. Stagnation enthalpy is determined in region

(4) as:

hr = h6 + (U 2+v2) 6  (89)
2

where static enthalpy, h6, is a function of T6 and is found

using the methods described in Appendix A. Across wave (3),

stagnation enthalpy in region (4) is found using the

conservation of energy relationship, h16 = ht4. Subroutine

ENTHGAM performs the calculation of enthalpy and ratio of

specific heats based on temperature and can be found in

Appendix L. Recalling thuc o=v/u, stagnation enLiiaipy can

be written as:

ht, = h4 + _U2(1 +0) (90)

Solving for u4 gives:

2(hC -h,)
U' = (91)

The y component of velocity is then computed as:

.4  
=  U4(4 (92)

Mach number can now be computed:

N4- a (93)
a4
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j+1t2j+22

J j

x

Figure 21 Riemann problem in solution space and wave
pattern (3:174)
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Appendix C: Numerical Algorithm

C.1 Introduction

The methodology of flux-difference-splitting for

supersonic planar flow and the first-order accurate marching

scheme is presented in this appendix. This is a summary of

the numerical schemes and the reader is referred to

reference (3) for further details.

C.2 Riemann Fluxes

After solving the Riemann problem by one of the three

.ethods described, the Riemann fluxes are computed.

Figure 22 shows a schematic of the flux differencing and

splitting; The solution of the Riemann problem in Appendix B

is the basis for computing the fluxes.

To illustrate, consider the flux vector, El, for the

Riemann regions 0, 2, 4, 6:

(El) =p 0u0  (94)

(El) 2 = p2u2  (95)

(El) 4  p4u4  (96)

(El) 6 = P6U6  (97)

The Riemann flux-differences are the differences of the El

vector taken across waves (1), (2), and (3):
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(dEl)wave]3  (El) 6 -(El) 4  (98)

(dEl) wave 2  (El) 4 - (E) 2  (99)

(dEl) wavel = (El) 2 - (El) 0  (100)

The sum of the contributions across all three waves gives

the total contribution at Riemann node j+1/2 (3:184):

(dEl %j.1/2 = I (dEl) wave3 + (dEl) Ive2+(dEl) vel) -/2 (101)

Riemann node j-1/2 is handled in a similar fashion, as are

the other E and F vector components.

C.3 Splitting the Flux Differences

With the Riemann problem solved and the flux

differences taken, the differences are now split to

determine which information from Riemann nodes j+1/2 and j-

1/2 will reach node j at the next plane, i+l (3-183).

Figure 22 illustrates the flux difference and splitting.

Streamlines and characteristics determine which

direction to send the differenced fluxes. As described by

Doty from Chakravarthy's report, Godunov and Osher developed

identical methods for splitting the flux differences, in

unsteady flow, based on the sign of tlie slopes of the waves

emanating from the Riemann node (3:184). This concept was

extended to steady, two-dimensional flow. For example, at

node j-1/2, if the slope of waves (1), (2), or (3) is

positive, the flux difference cf the E and F vectors across
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that wave(s) contributes to the solution at node i+1, 3

(3:185). A similar process occurs at Riemann node j+1/2

where this time only flux differences with a negative slope

contribute to the solution at i+l,j. In equation form,

summing the positive and negative contributions at the

Riemann nodes j+1/2 and j-1/2, respectively, yields (3:186):

dE Fd1/2 = [dEwave3]- + [dwve2l + [dEwavel- (102)

17 j+1/1 + +1/2 7j+1/2J

[Amwave3]* + kjwavefl+ [deavel] (13

dEj-11 2  [-] + UJ-/2+ J-/(103)

where the positive or negative signs denote positively or

negatively sloped flux differences. All, none, or some of

the waves can contribute to the solution, depending on their

slopes. The same procedure is applied to the F vector. For

further details, refer to Appendix J of reference (3).

C.4 First-Order Accurate Marching Scheme

The governing equations for supersonic flow are

hyperbolic and can thus be solved by a marching technique.

The transformed governing equations are developed in

Appendix D of reference (3) and are repeated here without

proof (3:188):

a(E) a(E) - a (F) (104)

ac 0-7 '01yl

In order to march the flow in the x or L direction a

combination of finite difference and flux difference
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approximations are used for the partial derivatives of E and

F in eq. (104). Substituting these approximations directly

into eq. (104) yields:

A1 (E) = Aj(E) - A(F) (105)

A( Aq Aq

where A, is the finite difference operator for the [

direction and A, is the flux difference operator for the 71

direction (3:188). For convenience, AT) is chosen to be

unity. Rearranging yields:

Ai(E) = -ACxAj(E) - ACTyAj(F) (106)

The solution is advanced in the x direction using a

finite difference operator for A,(E) in eq. (106):

A()= E E (107)

Substituting this into eq. (106) and rearranging yields

(3:189):

=E - AC nxAj(E) - AC TyA(F) (108)

As discussed earlier, the solution uses negatively

biased information from Riemann node j+1/2 and positively

biased information from Riemann node j-1/2. Recalling the

results of eqs. (102) and (103), the first-order accurate

FDS representations for AE and A.F operators are (3:190):

Aj (E) = {dE; 112 + dij#1l2} (109)
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Ai (F) :{dF 11 2  ' dF; 112) (110)

Substituting eqs. (109) and (110) into eq. (108) yields the

first-order accurate FDS approximation to the solution of

the governing equations (3:190):

(111)
= - AC x1 [dE;112 + -] [ 2 + dE. 112]
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Figure 22 Flux differences and splitting (3:187)
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Appendix D: Decoding the Solution

D.1 Introduction

After marching the solution to the next plane, i+l, the

newly calculated E and F vectors must be decoded into

primitive variables so the Riemann problem may be solved.

This will then complete the "loop" needed to solve the flow

field from one plane to next.

D.2 Decoding, Perfect Gas

Decoding the E vector requires that all components be

solved simultaneously. The E vector with its four

components are known from marching to the i+1 plane. It is

repeated here for convenience:

Pu
E Pu2+P (112)

PL'IV
u(pe+P)

The pe term in the E4 component can be written as:

pe = p0 + -p(U 2 +v 2 ) (113)
2

For a perfect gas, specific internal energy, 0, can be

written as:

= CVT (114)

The following relatioT holds for a thermally perfect gas
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(10:44):

= Rgas (115)
Y-1

Recalling the thermal equation of state, substituting eq.

(115) into eq. (114), and substituting that result into eq.

(113) yields:

pe P + -p(u 2+v 2 ) (116)
Y-l 2

This is the fifth equation to close the system of five

unknowns. Eq. (116) can be substituted into the E4

component to give:

E4 = U[P +_Ip(u2+v2))+P] (117)
y-1 2

Expanding and rearranging eq. (11) givres:

E4 = uP[ Y ]+IPu(u2+v2) (118)

Recalling that E1= pu, E2, E3, and E4 can be written as:

E2 = (El) u+P (119)

E3 = (E1)v (120)

E4 = (El) (u 2 ) +-1 (El) ( V2) (121)

Solving eq. (120) for the y component of velocity, v, gives:
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V-= E3 (122)
El

Eq. (119) can be solved for P:

P = E2- (El) u (123)

Eqs. (122) and (123) can be substituted into eq. (121) to

yield:

E4 = u1 I 1[(E2)-(E)uI+-!(EI) (u2)+-(El) [-- 2 (124)

These manipulations have resulted in an E4 component that is

a function of the known E vector components and the one

unknown, u, and can now be cast as a quadratic equation:

y+1 (El) u2-[ Y(E2)u+[(E4)-, (E3)2= 0 (125)
2 (Y-1) '' Y-1' 1'2 (El) I

au 2+bu+c = 0 (126)

This quadratic equation can now be used to find the x

component of velocity, u, where it has been determined that

the positive value is the correct root (3:222). The

primitive variables are:
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U = -b + Vb2 - 4ac (127)
2a

V- E3 (128)
El

P = E2-(El)u (129)

p = (El) (130)
U

P 1i

pe = - Ip (u 2+v 2) (131)
y-1 2

This completes the decoding process for a perfect gas.

D.3 Decoding, Imperfect Gas

Decoding the E vector for an imperfect gas requires

that the pe term of the E4 component be consistent with the

imperfect gas assumption. Recall eq. (113) , rewritten here

for convenience:

pe = pQ + 1 p(u 2 +v 2) (132)

Specific internal energy, 6, for an imperfect gas is given

as (10:58):

=h - RT (133)

Substituting eq. (133) into eq. (132) yields the thermally

perfect form of total internal energy:
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J1

pe = ph - P + p-(u2 +V2) (134)
2

Substituting eq. (134) into the E4 component and canceling

the pressure terms gives:

1

E4 = u[(ph - P + _p(u 2 +v2) +P] (135)
2

1

E4 = puh + -pu(u 2 +v2 ) (136)
2

Substituting the El component into eq. (136) yields the

final form of the E4 component:

E4 h(El) 1 (El)u2 + 1 (E3)2  (137)

2 2 El

This equation is now a function of the x component of

velocity, u, and enthalpy, which itself is a function of

temperature from the least squares coefficient. An

expression for the velocity component, u, must be found that

is a function of temperature so as to obtain an equation for

E4 that will, subsequently, also have one unknown,

temperature. Start by solving the El component for u: u=

El/p. Substitute the thermal equation of state for p:

U = (EI)RT (138)P

Solve the E2 component for P and substitute the result into

eq. (138):
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U (El)RT (139)
E2- (EI) u

Rearrange eq. (139) into a quadratic equation in the x

component of velocity, u:

(El)u 2 + (E2) u + (El)RT = 0 (140)

U = E2 ± y(E2)-4(El) ((El)RT) (141)2 (El)

From this manipulation, it is seen that u is now a function

of temperature. As was desired, the E4 component is now

also a function of only temperature. Temperature can now be

found by an iterative technique, such as the secant method.

With temperature determined, u can be obtained by the

quadratic equation. Similar to the perfect gas case,

pressure can be obtained from eq. (129) and density is

obtained from eq. (130).

The decoding process for the imperfect gas model is now

complete and accounts the variable specific heats as a

function of temperature.
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Appendix E: New Subroutines

This appendix contains the three additional subroutines

ENTROPY, ENTHGAM, and IMPERFECT, and the code for solving

the imperfect gas oblique shock wave problem. Modifications

to the complete code are denoted by * in FORTRAN column one.
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subroutine entropy (pl,p2,tt,t)

c

o computes temperature after an isentropic wave based
c on the pressure in the regions before and after wave
o and temperature in the region prior to the wave.
c

common/coefficient/
1 alN2,blN2,clN2,diN2,elN2,plN2,hlN2,
2 ahN2,bhN2,chN2,dhN2,ehN2,phN2,hhN2,
3 al02,blO2,cl02,dl02,el02,pl02, hl02,
4 ahO2,bhO2,chO2,dhiO2,ehO2,phO2,hhO2,
5 alAr,plAr,hlAr,
6 ahAr,phAr,hhAr,
7 alH,blH,clH,dlH,elH,piH,hlH,
8 ahH,bhH,chH,dhH,ehH,phH,hhH,
9 alOH,bIOH,clOH,dlOH,elOH,plOH,hlOH,
9 ahOH,bhOH,chOH,dhOH,ehOH,phOH, hhOH,
I alH2,blH2,clH2,dlH2,eiH2,plH2,hl{2,
2 ahH2,bhH2,chH2,dhH-2,ehH2,phH2,hhH2,
3 alNO,blNO,clNO,dlNO,eiNO,plNO,hlNO,
4 ahNO,bhNO,chNO,dhNO,ehNO,phNO,hhNO,
5 alO,blO,clO,dlO,elO,plO,hlO,
6 ahO,bhO,chO,dhO,ehO,phO,hh0,
7 alH2O,blH20,clH2O,dlH2O,elH2O,plH20,hlH2O,
8 ahH2O,bhH'20,chH2,dhH2O,ehH2O,phH2O,hhH2O,
9 lN2, 102, lAr, IH, IOH, H2,iNO, 10, H20

commnon/species/
1 xmsfN2,xmwN2,xmpsfO2,xmwO2,xmsfAr,xmwAr,
2 xmsfH,xmwH,xmsfOH,xmwOH-,xmsfH2,xmwH2,xmsfNO,xmwN0,
3 xmsf0,xmwO,xmsfH20,xmwH20,
4 runiv,rmix

C---------------------------------------------------------------------------

iter=0
itmax=50
rmtol= .000001
tltt

if(tl.le.1000.) then
phi mix 1

1 1N2*(plN2+aiN2*Iog(tl)+blN2*tl+clN2*tl*tl/2.+dlN2*
2 tl**3./3.+eIN2*ti.**4./4.)*runiv*xmsfN2/xmwN2 _,+
3 102*(pl02+a102*i.og(tl)+b102*tl-'cl02*tl*tl/2.+d102*
4 tl**3./3. el02*tl**4./4.)*runiv*xmsf02/xmw02 +
5 lAr*(plAr+alAr*iog(t1) )*runiv*xmsfAr/xmwAr+
6 IH*(plH+alH*log(t1) )*ruiniv*xmsfH/xmwH+
7 10H*(pl0H+al0H*I.og(t1)4-h10H*t1+c10H*tl*tl/2.+di0H*
8 tl**3./3.+elOH*tl**4./4.)*runiv*xmsfOH/xmw0HI +
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9 lH2*(plH2+alH2*log(tl)+blH2*tl+clH2*tl*tl/2.+dlH2*
9 tl**3./3.+elH2*tl**4./4. )*runiv*xmSfH2/xmwH2 +

1 1NO*(plNO+alNO*log(tl)+blNO*tl+clNO*tl*tl/2.+dlNO*
2 tl**3./3.+elNO*tl**4./4. )*runiv*xmfsfNO/XmwNO +
3 1o*(plO+alo*log(tl)+blO*tl+clO*tl*tl/2.+dlo*
4 tl**3./3.+elO*ti**4./4. )*runiv*xmsfo/xmwo +
5 lH20*(plH2O+alH2O*log(tl)+blH2O*tl+clH20*tl*tl/2.
6 +dlH2O*tl**3./3.+elH2O*tl**4./4.)
7 *runiv*xmsfH20/xmwH2O
else

phimixl=
1 1N2*(phN2+ahN2*log(tl)+bhN2*tl+chN2*tl*tl/2.+dhN2*
2 tl**3./3.+ehN2*tl**4./4. )*runiv*xmsfN2/xmwN2 +
3 102*(ph02+ahO2*Iog(tl)+bhO2*tl+chO2*tl*tl/2.+dhO2*
4 tl**3./3.+ehO2*tl**4./4. )*runiv*xmsf02/xmwO2 +
5 lAr*(phAr+ahAr*log(tl) )*runiv*xmsfAr/xmwAr +
6 lH*(phH+ahH-*log(tl) )*runiv*xmsfH/xmwH +
7 loH*(phOI{-iahOH*og(tl)+bhOH*tl+chOH*tl*tl/2.+dhOH*
8 tl**3./3.+ehOH*tl**4./4. )*runiv*xmsfOH/xmwOH +
9 1H2*(phH2+ahH2*log(tl)+bhH2*tl+chH2*tl*tl/2.+dhH2*
9 tl**3./3.+ehH2*t1**4./4. )*runiv*xmsfH2/xmwH2 +
1 lNO*(phNO+ahNO*log(tl)+bhNO*tl+chNO*tl*tl/2.+dhNO*
2 tl**3./3.+ehNO*tl**4./4. )*runiv*xmsfNO/xmwNO +
3 10* (pho+aho*log (ti )+bh0*tl+ch0*tl*tl/2 .+dhO*
4 tl**3 ./3 .+eh0*tl**4./4.)*runiv*xmsfO/xmwO +
5 lH20* (phH20+alhH2O*log (ti) +bhH2O*tl+chH2O*tl*tl/2.
6 +dhH2O*tl**3./3.+ehH2O*tl**4./4.)
7 *univ*xmsfH2O/xmwH20
end if

phirnix2=phimixlIrmix* log (p2/pi)
t2=tlr50.

do 100 iter=1,itmax
if(t2.1e.1000.) then
phimix2g=

1 1N2*(plN2+alN2*log(t2)+bIN2*t2+clN2*t2*t2/2.+dlN2*
2 t2**3./3.+elN2*t2**4./4. )*runiv*xmsfN2/xmwN2 +
3 102*(p102+a102*log(t2) b102*t2+cl02*t2*t2/2. id102*
4 t2** *3. /3. +el02*t2**4./4.)*runiv*xmsfO2/xmwO2 +
5 lAr*(plAr+alAr*log(t2) )*runiv*xmsfAr/xmwAr +
6 1H*(plH+alH*log(t2) )*ruriv*xmsfH/xmwH +
7 1OH*(plOH+alOH*log(t2)+blOHf*t2+clOH*t2*t2/2. dIOH*
8 t2**3./3.+elOH*t2**4./4.)*runiv*xmsfOH/xnw0H +
9 1H2*(plH2+a1112*log(t2)+blH12*t2+clH2*t2*t2/2.+d112*
9 t2**3./3.+elH2*t2**4./4. )*runiv*xmsfH2/xmwH2 +
1 lNO*(plNO+alNO*Iog(t2)+blNO*t2+clNO*t2*t2/2.+dINO*
2 t2**3./3.+elNO*t2**4./4. )*rlniv*xmsfNO/xmwNO +
3 lO*(plO+aIO*log(t2)+bIO*t2+c10*t2*t2/2.+dlO*
4 t2**3./3.+elO*t2**4./4.)*ruiniv*xmsfO/xmwO +
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5 1H20*(plH2O+alH20*log(t2)+blH2O*t2+clH20*t2*t2/2.
6 +dlH2O*t2**3 ./3.+elH2O*t2**4./4.
7 *runiv*xmsfH20/xmwH2O
else

phimix2g=
1 1N2*(phN2+ahN2*log(t2)+bhN2*t2+chN2*t2*t2/2 .+dhN2*
2 t2**3./3.+ehN2*t2**4./4.)*runiv*xmsfN2/xmwN2 +
3 102*(phO2+ahO2*log(t2)+bhO2*t2+cho2*t2*t2/2.+dhO2*
4 t2**3./3.+ehO2*t2**4./4. )*runiv*xmsfO2/xmw02 +
5 lAr*(phAr+ahAr*log(t2) )*runiv*xmsfAr/xmwAr +
6 lH*(phH+ah-*log(t2) )*runiv*xmsfH/xmwH +
7 lOH*(phOH+ahOH*log(t2)+bhOH*t2+chOH*t2*t2/2 .+dhOH*
8 t2**3./3.+ehOEI*t2**4./4. )*runiv*xmsfOH/xmwOH +
9 1H2*(phH2+ahH2*log(t2)+bhH2*t2+chH2*t2*t2/2.+dhH2*
9 t2**3./3.+ehH2*t2**4./4. )*runiv*xmsfH2/xmwH2 +
1 lNO*(phNO+ahNO*log(t2)+bhNO*t2+chNO*t2*t2/2.+dhNO*
2 t2**3./3.+ehNO*t2**4./4. )*runiv*xmsfNO/xmwNO +
3 10* (pho+ahO*log(t2)+bho*t2+chO*t2*t2/2 .+dh0*
4 t2**3./3.+eha*t2**4./4. )*runiv*xmsfO/xmwO +
5 lH2O0 (phH2O+ahH20*log (t2 )+bhH2O*t2+chH2O*t2*t2/2.
6 +dhH2O*t2**3 ./3 .+ehH2O*t2**4./4.)
7 *runiv*xmsfH20/xmwH2O
end if

fl=phimix2 -phimix2g
slope= (phimix2g-phimixl )/( t2-tl)
t3=t2+f 1/s lope
if(abs((t3-t2)/t2).lt.rmtol) go to 20
t1=t2
t2=t3
phimixl=phimix2g
iter= iter+1

100 continue
write(6,*)'temperature for region after shock (derived
2 from entropy) failed to converge. Iters=',iter
stop

20 continue
t=t3
return
end

--========end of subroutine entropy=================
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subroutine enthgam (t, hmix, gmix)

C
c computes enthalpy and gamma as a function of
c temperature based on coefficients from CET85 program
c (JANAF tables curve fitted)
c

common/coef ficient/
1 alN2, blN2 ,clN2 ,dlN2 ,elN2 ,plN2,/hlN2,
2 ahN2,bhN2,chN2,dhN2,ehN2,phN2,hhN2,
3 al02,bl02,cl02,dl02,el02,p102,hI02,
4 ah02,bhO2,chO2,dhO2,ehO2,phO2,hhO2,
5 alAr,plAr,hlAr,
6 ahAr,phAr,hhAr,
7 alH,blH,clH,dlH,elfl,plH,hlH,
8 ahH,bhH,chH,dhH,ehH,ph1,hhH,
9 alOH,blOH,clOH,dlOH,elOH,plOH,hlOH,
9 ahOH,bhOH,chOH,dhOI{,ehOH,phOH,hhOH,
1 alH2,blH2,clH2,dlH2,elH2,plH2,hlH2,
2 ahH2,bhH2,chH2,dhH2,ehH2,phH2,hhH2,
3 alNO,blNO,clNO,dlNO,elNO,plNO,hlNO,
4 ahNO,bhNO,chNO,dhNO,ehNO,phNO,hhNO,
5 aio,blO,cl0,dlO,el0,plO,hlO,
6 ah0,bh0,ch0,dhO,eh0,ph0,hhO,
7 alH2O,blH2O,clH2O,dlH20,elH20,plH2O,hlH2O,
8 ahH20,bhH2O,chH2O,dhH2O,ehH20,phH2O,hhH2O,
9 1N2, 102, lAr, lH, lOH, 1H2, INO, 10,11-20

common/species/
1 xmsfN2,xmwN2,xmsf02,xmw02,xmsfAr,xmwAr,
2 xmsfH,xmwH,xmsfOH,xinwOH,xmsfH2,xmwH2,xmsfNO,xmiwNO,
3 xmsfO,xmw0,xmsfH20,xmwH20,
4 runiv,rmix

c--------------------------------------------------------------
c h and cp coefficients from cet85
c

if(t.le.1000.) then
hcoefN2=hlN2+alN2*t~blN2*t*t/2 .+cIN2*t**3.13.+d1N2*

2 t**4./4.+elN2*t**5./5.
hcoef02=hl02+al02*t-z.bl02*t*t/2 .+c102*t**3./3.+d1102*

2 t**4./4.+e102*t**5./5.
hcoefA:-=hlAr+a 1Ar*t
hcoefH.Ih1H+alH-*t
hcoefOH=hlOH+alOH*t+blOH*t*t/2 .+ciOH1*t**3 ./3.+dIOi*

2 t**4./4.+elOlH*t**5./5.
hcoefH2=hlH2+alH2*t+blH2*t*t/2 .+c1H2*t**3./3.+dIH2*

2 t**4./4.+elH2*t**5./5.
hcoefNo=hlNo+aINO*t+blNO*t*t/2 .+clNO*t**3 ./3 .- dINo*

2 t**4./4.+eINO*t**5./5.
hcoef0O~h10+al0*t+b10O*t*t/2. +cIO*t**3./3.+dIO*
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2 t**4./4.+elO*t**5./5.
hcoefH2O=hlH2O+alHI2O*t+blH2O*t*t/2 .+clH2O*t**3./3.

2 +dlH2O*t**4./4.+elH2O*t**5./5.
C

C

cpcoefN2=alN2+blN2*t+clN2*t*t+dlN2*t**3.+elN2*t**4.
cpcoef02=al02+blO2*t+cl02*t*t+dl02*t**3.+e102*t**4.
cpcoe fAr=a lAr
cpcoefH~alH
cpcoefOH=alOH+blOH*t+cIOH*t*t+dlOH*t**3 .+elOH*t**4.
cpcoefH2=alH2+blH2*t+clH2*t*t+dlH2*t**3.+elH2*t**4.
cpcoefNo=alNo+blNO*t+clNlO*t*t+dlNO*t**3.-+elNO*t**4.
cpcoefO=alO+blO*t+clO*t*t+dlO*t**3.+elO*t**4.
cpcoefH2O=alH2O+bIH2O*t+clH2O*t*t+dlH2O*t**3.
2 +elH2O*t**4.

C

else
C

hcoefN2=hhN2 ;ahN2*t~bhN2*t*t/2 .+chN2*t**3./3.-+dliN2*
2 t**4./4.+ehN2*t**5./5.

hcoefO2=hhO2+ahO2*t+bhO2*t*t/2 .+chO2*t**3 ./3.-+dhO2*
2 t**4./4.+ehO2*t**5./5.

hcoefAr=hhAr+ahAr*t
hcoefH=hhH-+ahH*t
hcoefOH=hhOH+ahOH*t+bhOH*t*t/2 .+chOH*t**3 ./3 .+dhOH*

2 t**4./4.+ehOH*t**5./5.
hcoefH2=hhH2-iahH2*t+bhH2*t*t/2 .+chH2*t**3 ./3. +dhH2*

2 t**4./4.+ehH2*t**5./5.
hcoefNo=hhNo+ahNO*t+bhNO*t*t/2 .+chNO*t**3 ./3 .+dhNo*

2 t**4./4.+ehNO*t**5./5.
hcoefO=hhO+ahO*t~bhO*t*t/2 .+chO*t**3 ./3 .+dhO*

2 t**4./4.+ehO*t**5./5.
hcoeffH2O=hhH20+ahH20*tib-bhH20*t*t/2.+chH20*t**3 ./3.

2 +dhH2O*t**4./4.+ehH2O*t**5./5.
C

cpcoefN2=ahN2+bhN2*t+chN2*t*t+dhN2*t**3.-+ehN2*t**4.
cpcoefO2=ahO2+bhO2*ti-chO2*t*tf-dhO2*t**3.+ehO2*t**4.
cpcoe fAr=ahAr
cpcoefH=ahH
cpcoefoH-=ahOH+bhoH* t+chOHi*t*t+dhOHl*t** 3.+ehOH*t**4.
cpcoefH2=ahfl2+bhH2*t+chH12*t*t+dhH2*t**3.+ehH2*t**4.
cpcoefNo=ahNO+bhNO*t+chNO*t*t+dhNO*t**3.+ehNO*t**4.
cpcoefO=ahO+bhO*t+chiO*t*t+dhO*t**3.+eho*t**4.
cpcoefH2O=ahH2O+bh2O*t+chH2*t*t+dhH20*t**3.

2 +ehH2O*t**4.
C

end if
C

c Compute h for each species. Molar values of h (t=OK)
c must be found for each species. These can be found

83



c in the JANAF tables.
C

hN2=hcoefN2*runiv+8669000.
h02=hcoefO2*runiv+8682000.
hAr=hcoef Ar*run iv+6 1964 50
hH=hcoefHi*runiv+6196504.
hOH=hcoefOH*runiv 8815688.
hH2=hcoefH2*runiv+84684 16.
hNO=hcoefNO*runiv+9192248.
hO=hcoefo*runivi6727872.
hH2O=hcoefH2O*runiv+9904000.

C

c Compute h of mixture
C

hmix= 1N2*hN2*xmsfN2/xmwN2+
2 102*h02*xmsfO2/xmwO2+
3 lAr*hAr*xmsfAr/xinwAr+
4 1H*hH*xmsfH/xmwH+
5 1OH*hOH*xmsfOH/xmwOH+
6 lH2*hH-2*xmsfH2/xmwH2+;
7 lNO*hNO*xmsfNO/xmwNO+
8 1O*hO*xms fO/xmwO+
9 lH20*hH2O*xmsfH2O/xmwH2O

C
c Compute cp of mixture
C'

cpmix=lN2*cpcoefN2*runiv*xmsfN2/xmwN2
2 +102*cpcoefO2*runiv*xmsfO2/xmwO2
3 +lAr*cpcoefAr*runiv*xmsfAr/xmwAr
4 +1H*cpcoefH~*runiv*xmsfH/xmwtH
5 +IOH*cpcoefOH*runi v*xmsfOH/xmwOH
6 +1H2*cpcoefH2*ruiniv*xmsfH2/xmwH2
7 -I-NO*cpcoefNO*ruiv*xmnsfNO/xmwNO
8 +1O*cpcoefO*runiv*xmsfO/xmwO
9 +lH20*cpcoefH2O*runiv*xmsfH2/xmwH-20

C

c Compute cv and gamma of the mixture
C

cvmix=cpmix -rmix
gmi x=cpj i x/cvm ix

C

return
end

c=====-== end of Subroutine enthqam========

84



subroutine imperfect (j,g)

c
c computes the primitive variables from the e
c vector based on a thermally perfect gas
c

parameter (jdim=501)

common/species/
xmsfN2, xmwN2, xms f02 ,xmwO2, xmnsfAr, xmwAr,

2 xmsfH,xmwH,xmsfOH,xmwOH,xmsfH2,xmwH2,xmsfNO,xmwNO,
3 xmsfO,xmwO,xmsfH2O,xmwH2O,
4 runiv,rmix

common/solution! cn,olddx,pamb,betafd,rmtol,xstop,
2 phi,x(jdim,2) ,y( jdim,2) ,rh( jdim,2) ,u(jdim,2),
3 v(jdim,2) ,p( jdimn,2) ,t(jdim,2),rhe(jdim,2),
4 xmach(jdim,2)

common/riem! rhQ(jdim),rh2(jdim),rh4(jdimn),rh6(jdim),
2 uO(jdim),u2(jdim),u4(jdim),u6(jdim),xmach2(jdim),
3 vO(jdim),v2(jdim),v4(jdim),v6(jdim),xmach4(jdim),
4 pO(jdim),p2(jdim),p4(jdim),p6(jdim),
5 rheO(jdim),rhe2(jdimn),rhe4(jdim),rhe6(jdim),
6 slplO(jdim),slp22(jdim),slp36(jdim)

common/e fvector/
1 el(jdimn,2) ,e2(jdim,2) ,e3(jdim,2) ,e4(jdim,2),
2 fl(jdim,2) ,f2(jdim,2) ,f3(jdimf,2) ,f4(jdim,2)

common/compf Igi!
1 jmarchiibnd,jattach,ioptini,itermax,iteropt,
2 imax,jnozz,ix,knozzle,nwpnts,kucowl,klcowl,
3 ipsarc,igrid,
4 islpnioz,jucowl,jlcowl,ipackin,ipackex,
5 jpackin,jpackex,
6 iriem,irmbnd,inipnoz,ivinit,ivext,nixint,
7 nixext,kbot,
5 methiod,limit,ipastuc, ipastlc,ixcowl,irmfix,
9 itri.em,itmoc,
9 inpcwl, icompar, ktrk, idoext

C
C---------------------------------------------------------------------
c j=1

iter=O
itmax=50
if (j .eq.jnozz.or.) .eq.jlcowl) then
tl=pO() )/rhiO( j)/rmix
else
tl=p6(j)/rh6(j )/rmix
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endif
t 2=t1+ 50..
call enthgarn (tl,hl,gl)
ua=(e2(j,2)+sqrt(e2(j,2)*e2(j,2)-4.*el(j,2)*
2 el(j,2)*rmix*tl))/2./el(j,2)
fa=hl'*el(j,2)+.5*el(j,2)*ua*ua+.5*e3(j,2)*
2 e3(j,2)/e1(j,2)

10 call enthgam (t2,h2,g2)
ub=(e2(j,2)+sqrt(e2(j,2)*e2(j,2)-4.*e1(J,2)*
2 el(j,2)*rmix*t2) )/2./el(j,2)
fb~h2*el(j,2)+.5*el(j,2)*ub*ub+.5*e3(j ,2)*
2 e3(j,2)/el(j,2)
slope=(fb-fa)/(t2-tl)
t3=t2+(e4(j, 2) -fb)/slope
if(abs((t3-t2)/t2).le.rmtol) go to 20
if(iter.gt.itmax) then
write(6,*)'sub. imperfect failed to converge, plane
2 ix=',ix
write(6,*)'and stops at node j=',j
stop
endif
fa~fb
tl=t2
t2=t3
iter= iter+l
go to 10

20 continue
g=g2
u(j,2)=(e2(j,2)+sqrt(e2(j,2)*e2(j,2)-4.*el(j,2)*
2 el(j,2)*rmix*t3) )/2./el(j,2)
v(j ,2)=e3(j, 2)/el(j ,2)
if(abs(v(j,2)) .lt.l.e-3) v(j,2)=0.0
if(abs(e3(j,2)) .lt.1.e-3) e3(j,2)=0.0
p(j,2)=e2(j,2)-el(j,2)*u(j,2)
rh(j,2)=el(j ,2)/u(j,2)
rhe(j,2)=rh(j,2)*h2-p(j,2)+(rh(j,2)/2.)*
2 (u(j,2)*u(j,2)+v(j,2)*v(j,2))
ax=asnd(g2,p(j,2) ,rh(j,2))
vmag=sq~rt(u(j,2)*u(j,2)+v(j,2)*v(j,2))
xmach(j , 2=vmag/ax
t(j ,2)=t3
if(ix.eq.39.and.(j.eq.50.or.j.eq.51))then
endif

return
end
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subroutine enthgam(t,hmix,gmix)
~C

c computes enthalpy and gamma as a function of
c temperature based on coefficients from CET85 program
c (JANAF tables curve fitted)
c

common/coefficient/
1 alN2,blN2,clN2,dlN2,elN2,plN2,hlN2,
2 ahN2,bhN2,chN2,dhN2,ehN2,phN2,hhN2,
3 alO2,blO2,clO2,dlO2,elO2,plO2,hlO2,
4 ahO2,bhO2,chO2,dhO2,ehO2,phO2,hhO2,
5 alAr,plAr,hlAr,
6 ahAr,phAr,hhAr,
7 lN2,102,lAr
common/species/
xmsfN2,xmwN2,xmsfO2,xmwO2,xmsfAr,xmwAr,

2 runiv,rmix
c -----------------------------------------------------------
c h and cp coefficients from cet85
c

if(t.le.1000.) then
hcoefN2=hlN2+alN2*t+blN2*t*t/2.+clN2*t**3./3.+dlN2*

2 t**4./4.+elN2*t**5./5.
hcoefO2=hlO2+alO2*t+blO2*t*t/2.+clO2*t**3./3.+dlO2*

2 t**4./4.+elO2*t**5./5.
hcoefAr=hlAr+alAr*t
cpcoefN2=alN2+blN2*t+clN2*t*t+dlN2*t**3.+elN2*t**4.
cpcoefO2=alO2+blO2*t+clO2*t*t+dlO2*t**3.+elO2*t**4.
cpcoefAr=alAr

else
hcoefN2=hhN2+ahN2*t+bhN2*t*t/2.+chN2*t**3./3.+dhN2*

2 t**4./4.+ehN2*t**5./5.
hcoefO2=hhO2+ahO2*t+bhO2*t*t/2.+chO2*t**3./3.+dhO2*

2 t**4./4.+ehO2*t**5./5.
hcoefAr=hhAr+ahAr*t
cpcoefN2=ahN2+bhN2*t+chN2*t*t+dhN2*t**3.+ehN2*t**4.
cpcoefO2=ahO2+bhO2*t+chO2*t*t+dhO2*t**3.+ehO2*t**4.
cpcoefAr=ahAr

end if
c
c Compute h for each species. Molar values of h (t=298K)
c must be found for each species. Naturally occuring
c species will not have heats of formation.
c

hN2=hcoefN2*runiv+8669000.
h02=hcoefO2*runiv+8682000.
hAr=hcoefAr*runiv+6196000.45

c
c Compute h of mixture
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C

hmix=1N2*hN2*xmsfN2/xmwN2+
2 102*h02*xmsfO2/xmwO2+
3 lAr*hAr*xmsfAr/xmwAr

C

c Compute cp of mixture
C

cpmix=1N2*cpcoefN2*runiv*xmsfN2/xmwN2
2 +102*cpcoefO2*runiv*xmsfO2/xmwO2
3 +lAr*cpcoefAr*runiv*xmsfAr/xmwAr

C

c Compute cv and gamma of the mixture
C

cvmix=cpmix -rmix
gmix=cpmix/cvmix

return
end

subroutine tfromh (h2, tt, t2)
C

c back calculate temperature given enthalpy using the
c Newton-Raphson iteration method
c

common/coefficient/
1 alN2,blN2,clN2,dlN2,elN2,plN2,hlN2,
2 ahN2,bihN2,chN2,dhN2,ehN2,phN2,hhN2,
3 al02,bl02,cl02,dl02,e102,pl02,hl02,
4 ahO2,bhO2,chO2,dhO2,ehO2,phO2,hhO2,
5 alAr,plAr,hlAr,
6 ahAr,phAr,hhAr,
7 1N2,102,lAr

common/species/
xmsfN2 ,xmwN2 ,xmsfO2, xmwO2 ,xms fAr, xmwAr,

2 runiv,rmix
C---------------------------------------------------------------------------

i tmax= 300
tol=1.e-6

do 100 iter=1,itmax

if(t-t.le.1000.) then

hcoefN2=hlN2±alN2*tt~blN2*tt*tt/2 .+clN2*tt**3./3.
2 +dlN2*tt**4./4.+elN2*tt**5./5.
hcoef02=hl02+al02*tt+bl02*tt*tt/2 .+cl02*tt**3./3.

2 +dl02*tt**4./4 .+el02*tt**5./5.
hcoefAr=hlAr+alAr*tt
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else
hco fN2=hhN2+ahN2*tt+bhN2*tt*tt/2.+chN2*tt**3./3.

2 +dhN2*tt**4 ./4. I-ehN2*tt**5 ./5.
hcoefO2=hhO2+ahO2*tt+bhO2*tt*tt/2 .+chO2*tt**3./3.

2 +dhO2*tt**4 ./4.+ehO2*tt**5./5.
= hcoefAr=hhAr+ahAr*tt

end if

if(tt.le.l000.) then
dhcoefN2=alN2+blN2*tt+clN2*tt**2./2 . +CN2*

2 tt**3./3.+eiN2*tt**4./4.
dhcoefO2=al02+bl02*tt+cl02*tt**2 ./2 .+dl02*

2 tt**3./3.+e102*tt**4./4.
dhcoefAr=alAr

else
dhcoefN2=ahN2+bhN2*tt+chN2*tt**2 ./2. +dhN2*

2 tt**3./3.+ehN2*zt**4./4.
dhcoefO2=ahO2+bhO2*tt~chO2*tt**2 ./2 .+dhO2*

2 tt**3./3.+ehC2*tt**4./4.
dhcoefAr=ahAr
end if

hN2=hcoefN2*runiv+8669000.
h02=MboefO2*runiv+86 82000.
hAr=hcoefAr*runiv+6196450.

hmix~lN2*hN2*xmsfN2/xmwN2+
2 102*h02*xmsfO2/xwO2+
3 lAr*hAr*xmsfAr/xmwAr

ddhN2=dhcoefN2*iuniv
ddhO2=dlhcoefO2*runiv
ddhAr=dhcoefAr*run iv

dhmix=- (1N2*ddhN2*xmsfN2/xmwN2+
2 102*ddhO2,kxmsfO2/xmwO2+
3 lAr*ddhAr*xmsfAr/xmw!Ar)

fh=h2 -hmix
t2=tt- fh/dhmix

c write(6,*)'t2 iterated from tfrmoh',t2

if (abs((tt-t2)/t2).lt.tol) go to 20
tt=t2
iter=iter+1
hmix=O.

100 continue
write(6,*)'temperature from enthalpy failed to
2 stpconverge'
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20 continue
return
end

C.----------------end of subroutine enthgami
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* WARNING: THIS PROGRAM fS VERY SENSITIVE TO INITIAL
* GUESSES OF EPSILON. SHOULD BE SET CLOSE TO
* ACTUAL VALUE!

***** ********************** k*** *******W******************

* This program will solve the "exact" oblique shock
* problem for an imperfect gas (air), patterned after the*
* example problem in Zucrow and Hoffman example 7-10. *

* The output of this is used to form the IV line that *

* is used to validate the imperfect gas model. *
************* * * * ** *** ** * * ***** ***** ********* *** **** ****

program main

common/coefficient/
1 aIN2,blN2,clN2,dlN2,elN2,plN2,hlN2,
2 ahN2,bhN2,chN2,dhN2,ehN2,phN2,hhN2,
3 a102,blO2,clO2,dlO2,e1O2,plO2,hlO2,
4 ahO2,bhO2,chO2,dhO2,ehO2,phO2,hhO2,
5 alAr,plAr,hlAr,
6 ahAr,phAr,hhAr,
7 IN2,102,lAr
common/species/xmsfN2,xmwN2,xmsfO2,xmwO2,xmsfAr,xmwAr,
2 runiv,rmix

c -----------------------------------------------------------
tol=l.e-lO
itmax=200

lN2=1
102=1
lAr=l

c
c xmw - molecular weight
c xmsf- mass fraction
c a,b,c etc. CET coefficicents (I- low temp, h- high temp)

xmwN2=28.013
xmsfN2=.75556737622
alN2=3.7044177
blN2=-.14218753e-2
clN2=.2.8670392e-5
dlN2o=-.12028885e-8
elN2--.13954-'77e-13
pIN2=2.2336285
hln2=-.10640795e4

ahN2=2.8-32899
bhN2=.16322128e-2
chN2=-.62936893e-6
dhN2=.11441022e-9
ehN2=-.78057465e-14
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phN2=6 .3964897
hhN2=- . 89008093e3

xmw02=32.
xmsfO2=.231605141
al02=3 .7837135
bl02=-.30233634e-2
cl02=.9949275le-5
dl02=- .9818910le-8
el02= .33031825e-11
p102=3 .6416345
hl02=- .10638107e4

ah02=3 .6122139
bh02= .74853166e-3
chO2=- .19820647e-6
dh02= .33749008e-10
eh02=- . 23907374e-14

= ph02=3.6703307
hh02=- .1197815le4

xmwAr=39 .944
xmsfAr=.01282748278
alAr=2 .5
plAr=4. 36 60006
hlAr=- .74537498e3

ahAr=2.5
phAr=4. 36 60006
hhAr=- .74537502e3

rmix=287.09
runiv=8314.34

C

C

pi=3 .14159265359
degrad=pi/180.

*initial flow properties

write(6,*)'input delta in degrees'
read(5,*) delta
delta=delta*degrad
write(6,*) 'input temperature in Kelvin'
read(5,*) ti
write(6,*)'input mach number'
read(5,*) xml

c write(6,*)'input, velocity (m/s)'
c read(5,*) vl NM

write(6,*).'input pressure (Nm2)1
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read(5,*) pl,
Cwrite(6,*)Iinput density (kg/MA3)t

c read(5,*) rhol
wr~ite(6,*)'input first initail guess for epsilon'
read15,w) epsi
eps 1=epsl1*degrad
write(6,*.)'input second initail guess for epsilon'
read(5,.:) eps2
eps2=eps2*degrad

rhol=pl/tl/rmix
call enthgam(tl,hmix,giix)
al=sqrt (gmix*rrnix*tl)
vl=xml*al
hl=hmix
wri-te(6,*)'delta =',delta/degrad

write(6,*)'M1 = ,xinl
write(6,*)'vlmag =',vl
write(6,*)'a. = 1,al
write(6,*)'pl "''p1
write(6,*)'tl = ',tl
write(6,*)'rhol = ',rhol
write (6, *) 'amral=' ,gmix
write (6, *)I'

do 10 iter=l,itmax
fepsl= ((gmix+1. )/2.*xnil*xml/ (xml*xmnl sin (epsi)
2 *sin(epsl)-1.)-1.)*tan(epsl)
feps2=( (gmix+1. )/2.*xml*xml/(xml*xml*sin(eps2)

*sinfeps2)-l.)-l1*tan(eps2)
slope=( feps2-fepsl)/(eps2-epsl)
eps3=eps2+-(l./tan(d.*elta)-feps2)/. lope

c write(6,*)'epsilon iterations',eps3
if (abs((eps3-eps2)/eps2).It.tol) go to 20
epsl=eps2
eps2=eps3
ter=iter+l

te(,*)epslondid not converge'
St. .)

enci f
10 continue
20 epsl=eps3

c
50 xnml=xml*sin(epsl)

xnm2=sqrt((Yi.:m1*xnml+2./(gmix-1.))/(2.*grnix/(gmix-1.)
2 *,xnml*xnml-l.))
xm2g=xnm2/(sin(epsl-delta))
rhiorat=(gnix+1. )*xnml*xnml/(2.+(glix-1. )*xnml*xnml)
rho2 l=rhol'rhorat
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trat=(2.*gmix/(gmix+l. )*xnml*xnm1 ( (gmnix-1. )/gmix+l.))
2 *(((gmix-1.)/(gmnix+1.))+2./((gmix+1.)*xnml*xnml))
t2g=trat*tl
prat=2*gmix/(gmix~l. )*xfml*xnml ( (ginix-1. )/(gmix+l.))
p2g~prat*pl

k vnl=vl*sin (epsl)
vt=vl*cos (epsi)

p2=pl+rhol*vnl*vnl* (1. -rhol/rho2l)
h2=hl+vnl*vnl/2.*(l.-(rhol/rho2l)*(rhol/rho2l))
call tfromlh(h2,t2g,t2)
rho22=p2/rmix/t2
if (abs((rho22-rho2l)/rho2l).lt.tol) go to 40
p2=pl+rhol*vnl*vnl*(1. -rhol/rho22)
h2=hl+vnl*vnl/2.*(1. -(rhol/rho22)*(rhol/rho22))
call tfromh(h2,t2g,t2)

c Secant method for iteratively finding density

30 rho23=p2/rmix/t2
if (abs((rho23-rho22)/rho22).lt.tol) go to 40
slope=(rho22-rho23 )/(rh-)21-rho22)
rho2c=rho23+slope*(rho2. - rho22)
if (abs((rho2c-rho23)/rho-23).lt.tol) go to 40
rho2l=rho22
rh'o22=rho23
p2=pl+rhol*vnl*vnl* (1.-rhol/rho2c)

c write(6,*)'iterations of p',p2
h2=hl+vnl*vnl/'2.*(l. -(rliol/rho2c)*(rhol/rho2c))
call tfromh(h2,t2g,t2)
go to 30

40 continue
rho2=rho2c
vn2=rhol/rho2*vnl
v2=sqrt(vt*vt+vn2*vn2)
call enthgam(t2,hmix,gmix)
a2=sqrt (gmix*rmix*t2)
xm2 =v 2/a 2

c write(6,*)'mach2=',xm2
eps2=delta'asin (vn2/v2)
if (abs((eps2-epsl)/epsl).lt.tol) go to 60
epsl=eps2
go to 50

60 continue

write(6,*)'epsilon =',eps2/degrad
write(6,*)'M2 =',xm2
write(6,*)'v2mag =',v2
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write(6,*)'a2 =',a2
write(6,*)'p2 =',p2
write(6,*)'t2 =',t2
write(6,*)'rho2 =',rho2
write(6,*)Igarnma2 =',gmix
stop
end
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